
Bounds on general entropy measures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 12255

(http://iopscience.iop.org/0305-4470/36/49/008)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/49
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 12255–12265 PII: S0305-4470(03)63895-3

Bounds on general entropy measures

Dominic W Berry and Barry C Sanders1

Australian Centre for Quantum Computer Technology, Department of Physics,
Macquarie University, Sydney, New South Wales 2109, Australia

Received 23 May 2003
Published 25 November 2003
Online at stacks.iop.org/JPhysA/36/12255

Abstract
We show how to determine the maximum and minimum possible values of
one measure of entropy for a given value of another measure of entropy.
These maximum and minimum values are obtained for two standard forms of
probability distribution (or quantum state) independent of the entropy measures,
provided the entropy measures satisfy a concavity/convexity relation. These
results may be applied to entropies for classical probability distributions,
entropies of mixed quantum states and measures of entanglement for pure
states.

PACS number: 03.67.−a

1. Introduction

Entropy plays a significant role in both classical and quantum information theories and is
characterized by various measures, including the Shannon entropy in classical information
theory and the von Neumann entropy for a density operator of a quantum system. These
entropy measures are related, because the von Neumann entropy of a density operator equals
the Shannon entropy of the eigenvalues of this operator. The von Neumann and Shannon
entropies are the standard entropy measures, but other entropy measures are also employed.

For quantum systems, the linear entropy is widely employed. The linear entropy is
easier to calculate than the von Neumann entropy in general, hence its appeal. Other entropy
measures are also employed, including the Tsallis entropy [1] and the α, or Rényi, entropy [2].
A common way of describing these entropy measures is via the trace over a concave function
of the density operator. This general entropy measure has been widely studied both in the
context of classical probability distributions and mixed quantum states [3].

This work is motivated by problems where one entropy measure is required, but it is only
possible to obtain analytic results for another entropy measure. However, the exact result for
the desired entropy measure may not be required. Driven by this motivation, we establish
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a method by which one entropy measure can be estimated from another entropy measure
that may be easier to calculate. Specific examples of this problem have been considered in
[4–6]; here we derive the general result for general entropy measures in both the classical and
quantum contexts.

General entropy measures for classical information and for quantum information are
discussed in section 2. In section 3, we show that the states and probability distributions
given in [5, 6] extremise (minimize or maximize) general entropy measures for a given value
of another generalized entropy provided that a concavity/convexity condition is satisfied. In
section 4, we apply our methods to particular examples and provide an example of an entropy
measure that violates the concavity/convexity condition. We conclude in section 5.

2. General measures of entropy

Three common measures of quantum entropy are the von Neumann, linear and Rényi entropies.
The von Neumann entropy for density operator ρ is given by SvN(ρ) ≡ −Tr(ρ logρ),
where the notation log is used for logarithms base 2. The linear entropy is defined by
Slin(ρ) ≡ 1 − Tr(ρ2), and the α or Rényi entropy [2] by

Sα(ρ) ≡ 1

1 − α
log Tr(ρα). (1)

These three entropy measures are all calculated from an expression of the form TrF(ρ).
In order to derive general results, we therefore consider general entropy measures of the

form [3]

Sf (ρ) ≡ TrF(ρ). (2)

The function f is a mapping [0, 1] �→ R, and F is the corresponding operator function defined
by

F(ρ) ≡
d−1∑
i=0

f (λi)|φi〉〈φi | (3)

where λi and |φi〉 are the eigenvalues and eigenstates, respectively, of ρ, and d is the dimension
of the Hilbert space. The entropy measure Sf therefore only depends on the eigenvalues of
the density matrix, and may be calculated as Sf (ρ) = ∑

i f (λi). We require that the function
f satisfies the following three conditions:

Condition 1: f (0) = 0.
Condition 2: The function f is strictly concave or strictly convex.
Condition 3: The first derivative f ′ exists and is continuous in the interval (0, 1).

All the examples of entropy measures above satisfy these three conditions. The first
condition allows us to embed the Hilbert space in another of larger dimension without changing
the value obtained for Sf . The second condition implies that the extremal values of the entropy
are obtained for pure and maximally mixed states. This result follows from the following
lemma:

Lemma 1. Let f : [0, 1] → R be a function such that f (0) = 0, and let {λi} be a set of
d non-negative real numbers such that

∑
i λi = � � 1. If f is concave (convex), then the

minimum (maximum) value of
∑

i f (λi) is obtained for one of the λi equal to � and the rest
zero, and the maximum (minimum) value of

∑
i f (λi) is obtained for all λi equal.
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Proof. This result is well known; however, we show the result here for completeness.
Concavity (convexity) implies

∑
i

f (λi)
�
(�)

∑
i

[(1 − λi/�)f (0) + (λi/�)f (�)] = f (�). (4)

Thus the minimum (maximum) value of
∑

i f (λi) is obtained for one of the λi equal to� and
the rest zero. Similarly concavity (convexity) implies

∑
i

f (λi)
�
(�) d × f (�/d) (5)

so the maximum value of
∑

i f (λi) is obtained for all λi equal to �/d . �

Note that, because we allow the possibility that f is strictly convex, our measure may be
considered to be a measure of entropy or of purity (for simplicity we always call it entropy).
This generality is useful because it allows us to easily apply our results to cases such as the
linear entropy and the α entropy. The third condition is not absolutely necessary for Sf (ρ) to
be a reasonable entropy measure. However, we include it because it is necessary in order to
derive the bounds in the next section. Note that we do not require that the derivative exists
at the endpoints 0 and 1. Allowing the possibility of derivatives that diverge at the endpoints
means that our results may be applied to the von Neumann entropy. Note also that conditions 2
and 3 imply that the derivative f ′ must be one-to-one. The derivative f ′ will be monotonically
increasing (decreasing) if f is convex (concave).

Because the entropy measure Sf depends only on the eigenvalues of the density operator,
it is equivalent to the entropy measure for classical probabilities:

Hf ({pi}) ≡
d−1∑
i=0

f (pi) (6)

where f satisfies conditions 1–3. It is clear that Sf (ρ) = Hf ({λi}), where {λi} is the set of
eigenvalues for ρ. This is a generalization of the relation between the von Neumann entropy
and the Shannon entropy. We may also define an analogous general measure of entanglement
for pure states:

Ef (|ψ〉) ≡ Sf (TrA|ψ〉〈ψ|) =
d−1∑
i=0

f (λi) (7)

where f is a function satisfying conditions 1–3, |ψ〉 is a pure state shared between two
subsystems A and B, and λi are the Schmidt coefficients of |ψ〉.

The bounds that we derive in the next section may be applied to all three cases: Hf for
classical entropy, Sf for the entropy of mixed quantum states and Ef for entanglement of
pure quantum states. These three cases are mathematically identical, although the physical
interpretations are different.

3. Bounds on entropy measures

In this section we show how to determine the upper and lower bounds on one generalized
entropy for a given value of another generalized entropy. We will present the derivation in
terms of the entropy for probability distributions. The results for entropies of mixed states and
entanglement measures immediately follow from this result.
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From [5] the maximum and minimum Shannon entropies for a given value of the index
of coincidence (where g(λ) = λ2) are obtained for probability distributions

{λi} = {λ0, λ1, . . . , λ1} (8)

where λ1 = (1 − λ0)/(d − 1) � λ0 and

{λi} = {λ0, . . . , λ0, λ1, 0, . . . , 0} (9)

where λ1 = 1 − kλ0 < λ0 and there are k = �1/λ0� probabilities equal to λ0. Note that both
probability distributions (8) and (9) are parametrized by the single real number λ0. The result
given in [6] for the von Neumann and linear entropies is equivalent, except that the coefficients
λi are eigenvalues of a density matrix.

We provide a proof that these two probability distributions give the bounds when
comparing general entropy measures. The specific result is given below.

Theorem 1. Let Hg = ∑
i g(λi) and Hf = ∑

i f (λi) be two entropy measures where
the functions f and g satisfy conditions 1–3. If f̃ ′(g′) is strictly convex (concave), then
the maximum (minimum) Hf for fixed Hg is obtained for probability distribution (8),
and the minimum (maximum)Hf is obtained for probability distribution (9).

Here, and in the following derivations, the notation f̃ ′(g′) is equivalent to f ′(λ(g′)), and
means f ′ as a function of g′. Because the function g is strictly concave or convex, and the
derivative g′ exists in the interval (0, 1), g′ must be a one-to-one function of λ in this interval.
Hence it is possible to invert this function to obtain λ as a function of g′ (i.e. λ(g′)). In turn,
we may express f ′ as a function of g′ (i.e. f ′(λ(g′))).

Note that the crucial relation the entropy measures must satisfy in order for these bounds
to hold is that f̃ ′(g′) is strictly concave or strictly convex. The other restrictions on the
functions f and g are simply necessary to ensure that these are valid entropy measures.

It is also important to note that, for each value of Hg, the probability distributions of the
forms (8) and (9) are unique, and hence we obtain unique values for the upper and lower limits
on Hf . Therefore the bounds on Hf obtained using this method are unambiguous. To show
this result for (8), the value of Hg is given by

Hg = g(λ0) + (d − 1)g[(1 − λ0)/(d − 1)] (10)

so
dHg
dλ0

= g′(λ0)− g′[(1 − λ0)/(d − 1)]. (11)

Because g′ is one-to-one and λ0 � (1 − λ0)/(d − 1), dHg/dλ0 always has the same sign,
except at λ0 = (1 − λ0)/(d − 1) where it is zero. This point is a boundary to the range of λ0;
thus, Hg must be a one-to-one function of λ0. Hence, for each value of Hg, there is a unique
value of λ0 and therefore a unique probability distribution (8).

The situation is similar for the probability distribution (9), except there is an additional
complication due to multiple values of k. In the same way as for (8), we can see that in each
interval where k is a constant (1/(k+ 1), 1/k],Hg is a one-to-one function of λ0. In particular,
if g is convex (concave), then Hg is monotonically increasing (decreasing). In addition, it
is easy to see that Hg is continuous at the boundaries where 1/λ0 is an integer. Thus Hg
is a one-to-one function of λ0, and each value of Hg corresponds to a unique probability
distribution (9).

The method we will use for the proof is to first consider the restricted case for three
probabilities in lemmas 3–5, and then apply the result to prove theorem 1. When there are
only three probabilities, the problem reduces to finding the maximum and minimum of a
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function of a single real variable. This problem is relatively straightforward, and may be
solved by finding the boundaries of the domain of the function, as well as the turning points.
Before we proceed to the case for three probabilities, there is a minor result that we need to
prove for the case of two probabilities.

Lemma 2. Let g : [0, 1] �→ R be a function satisfying conditions 1–3. In addition, let λ0 and
λ1 be two numbers in the interval [0, 1], with the constraints

λ0 + λ1 = �(2) g(λ0) + g(λ1) = H(2)
g (12)

where 0 � �(2) � 1. There are at most two solutions to (12), and these solutions differ by a
permutation.

We use the notation convention that a superscript indicates a sum over fewer than d
probabilities. The numbers λ0 and λ1 are only two probabilities, so H(2)

g is not the same as
the entropyHg. The superscript (2) indicates that only two terms have been summed.

Proof. Solving (12) is equivalent to solving

g(λ0) + g(�(2) − λ0) = H(2)
g . (13)

If�(2) = 0, then there is only one solution, λ0 = λ1 = 0. If�(2) 	= 0, then we may determine
the number of solutions by considering the turning points of the left-hand-side (lhs). For a
turning point we require g′(λ0)− g′(�(2) − λ0) = 0. Since g′ is one-to-one, the only turning
point is for λ0 = �(2)/2. Thus there can be at most two different values of λ0 that give the
same value for the lhs of (13). Denoting one solution for λ0 as λg (so λ1 = �(2) − λg), the
other solution is for λ0 = �(2) − λg , in which case λ1 = λg . Therefore the two solutions are
simply related by a permutation. �

Next we require a result on the problem of finding the region of values that the three
probabilities may take given restrictions on these probabilities.

Lemma 3. Let g : [0, 1] �→ R be a function satisfying conditions 1–3. In addition, let λ0, λ1

and λ2 be real numbers in the interval [0, 1] with the restrictions

λ0 + λ1 + λ2 = �(3) (14)

where 0 � �(3) � 1 and

g(λ0) + g(λ1) + g(λ2) = H(3)
g . (15)

The number λ0 may take values within one or more subintervals of [0, 1]; at the boundaries
of these subintervals, either one of the λi is equal to zero, or two are equal.

Proof. Note first that two possible boundaries for λ0 are at 0 and �(3) (if λ0 = �(3) then
λ1 = λ2 = 0). To find other possible boundaries, consider solving for λ1 and λ2 for a given
λ0. The expression to solve may then be given as

g(λ0) + g(λ1) + g(�(3) − λ0 − λ1) = H(3)
g . (16)

For a given λ0, λ1 takes values in the region [0,�(3) − λ0], and the lhs has a turning point at
λ1 = (�(3) − λ0)/2. For the points λ1 = 0 and λ1 = �(3) − λ0, there is at least one λi which
is zero, whereas at λ1 = (�(3) − λ0)/2, λ1 and λ2 are equal.

The three points {0, (�(3) − λ0)/2,�(3) − λ0} are the three possible values of λ1 where
the lhs is at a maximum or a minimum for a given λ0. If there is no solution for λ1, then the
maximum and minimum are either both above or both belowH(3)

g . On the other hand, if there is
a solution, then H(3)

g must be between the maximum and minimum, or equal to one of these



12260 D W Berry and B C Sanders

values2. The maximum and minimum vary continuously with λ0. Therefore, as we pass from
a region where there is a solution to a region where there is no solution, either the maximum
or the minimum must pass throughH(3)

g . Hence, at a boundary of the region of values that λ0

may take, either at least one of the λi is zero, or at least two are equal. �

Now we apply this result to the bounds problem for the case of three probabilities:

Lemma 4. Let f and g be functions [0, 1] �→ R such that conditions 1–3 are satisfied. Let
λ0, λ1, and λ2 be real numbers in the interval [0, 1] with the restrictions (14) and (15), and let
H
(3)
f be defined by

H
(3)
f ≡ f (λ0) + f (λ1) + f (λ2). (17)

If f̃ ′(g′) is strictly convex or concave, then the extremal values of H(3)
f are obtained when at

least one of the λi is zero or at least two are equal.

Proof. Note first that, from lemma 2, for a given value of λ0 there are at most two solutions of
(14) and (15) for λ1 and λ2, and one solution is a permutation of the other. Thus, for each value
of λ0, there is only one possible value of H(3)

f . Therefore H(3)
f is a single-valued function of

λ0, and we may find the maximum and minimum by finding the boundaries of the region of
values that λ0 may take, as well as the turning points. From lemma 3, at the boundaries of the
region of values that λ0 may take, either one of the λi is zero, or at least two are equal.

To complete the proof, it remains to be shown that there are no turning points for values
of λ0 such that the λi are nonzero and unequal. For a turning point, we require that dH(3)

f

/
dλ0

changes sign. Taking the derivative of (17) with respect to λ0 gives

dH(3)
f

dλ0
= f ′(λ0) +

dλ1

dλ0
f ′(λ1) +

dλ2

dλ0
f ′(λ2). (18)

To remove the derivatives dλ1/dλ0 and dλ2/dλ0, we may take the derivatives of (14) and (15)
with respect to λ0, and substitute into (18). We then obtain

dH(3)
f

dλ0
=

[
f ′(λ1)− f ′(λ0)

g′(λ1)− g′(λ0)
− f ′(λ2)− f ′(λ0)

g′(λ2)− g′(λ0)

]{
[g′(λ2)− g′(λ0)][g′(λ1)− g′(λ0)]

g′(λ1)− g′(λ2)

}
.

(19)

Because g′ is one-to-one, if the λi are unequal, then the terms in the denominators are nonzero,
and the derivative dH(3)

f

/
dλ0 is continuous. In that case, for there to be a turning point, we

require that the derivative is zero, which implies

f ′(λ1)− f ′(λ0)

g′(λ1)− g′(λ0)
= f ′(λ2)− f ′(λ0)

g′(λ2)− g′(λ0)
. (20)

This expression implies that the three points (g′(λ0), f
′(λ0)), (g′(λ1), f

′(λ1)) and (g′(λ2),

f ′(λ2)) lie along a straight line. This is not possible with unequal probabilities if f̃ ′(g′) is
strictly convex or strictly concave. Thus we see that there are only two possibilities for a
maximum or minimum of H(3)

f : one of the λi is zero, or two are equal. �

The last lemma we show is a refinement of lemma 4 to account for when the various
solutions occur and whether they give a maximum or a minimum.

Lemma 5. Let f and g be functions [0, 1] �→ R such that conditions 1–3 are satisfied.
Let λ0, λ1 and λ2 be real numbers in the interval [0, 1] with the restrictions (14) and (15),
2 We use the convention that the terminology ‘between’ means not equal unless otherwise specified.
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λ
0

H
g(3
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2g(Λ(3)/2)

3g(Λ(3)/3)

g(Λ(3))

0 Λ(3)/3 Λ(3)

C

B

A

Figure 1. An example of the variation of the lhs of equation (21) as a function of λ0 for the case
where g is strictly concave.

and let H(3)
f be defined as in (17). If f̃ ′(g′) is strictly convex (concave), then the maximum

(minimum) H(3)
f is obtained only if two λi are equal and one is larger or equal, and the

minimum (maximum)Hf is obtained only if one of the λi is zero, or two are equal and one is
smaller or equal.

Proof. In the case that one of the λi is zero, we may take λ0 to be zero without loss of
generality. Using lemma 1, the extremal values of H(3)

g are g(�(3)) and 2g(�(3)/2). In
general, the extremal values of H(3)

g are obtained for all λi equal, giving H(3)
g = 3g(�(3)/3),

and all probabilities zero except for one, giving H(3)
g = g(�(3)). Therefore H(3)

g may take
values from g(�(3)) to 3g(�(3)/3). It is easily seen that 2g(�(3)/2) lies in this interval. If
H(3)
g lies between g(�(3)) and 2g(�(3)/2), or is equal to one of these values, then there is a

solution with λ0 = 0. If H(3)
g is between 2g(�(3)/2) and 3g(�(3)/3), or equal to 3g(�(3)/3),

there is no solution with λ0 = 0.
For the other case, where at least two of the λi are equal, we may take λ1 = λ2 without

loss of generality. Then the restrictions (14) and (15) give

g(λ0) + 2g[(�(3) − λ0)/2] = H(3)
g . (21)

To determine the number of solutions to this, we may consider the lhs as a function of λ0. The
number λ0 is in the range [0,�(3)], and there is one turning point at λ0 = �(3)/3. Therefore
there may be at most two solutions to equation (21).

To be more specific, the lhs takes the values 2g(�(3)/2), 3g(�(3)/3) and g(�(3)) for λ0

equal to 0, �(3)/3 and �(3), respectively. This situation is illustrated in figure 1 for the case
where g is strictly concave. There are five qualitatively different situations for different values
of H(3)

g from g(�(3)) to 3g(�(3)/3):

1. ForH(3)
g = g(�(3)) (line A), there is only one possible solution, which corresponds to all

the λi being zero except one.
2. If H(3)

g lies between g(�(3)) and 2g(�(3)/2) (between lines A and B), there can be only
one solution with λ1 = λ2. This solution is for λ0 in the interval (�(3)/3,�(3)). There
will also be a solution with λ0 = 0, giving a total of two solutions.

3. IfH(3)
g is equal to 2g(�(3)/2) (line B), then there are two solutions with λ1 = λ2, one for

λ0 = 0 and the other for λ0 in the interval (�(3)/3,�(3)). We can also obtain a solution
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by setting λ0 = 0; however, this solution is identical to the solution for λ1 = λ2 where
λ0 = 0. Therefore there are only two distinct solutions.

4. For H(3)
g in the range between 2g(�(3)/2) and 3g(�(3)/3) (between lines B and C), there

are two solutions with λ1 = λ2, one for λ0 in the range (0,�(3)/3) and the other for λ0 in
the range (�(3)/3,�(3)). There is no solution with λ0 = 0, again resulting in a total of
two solutions.

5. The last possibility is H(3)
g = 3g(�(3)/3) (line C), in which case all the λi are equal.

Thus we find that, forH(3)
g between 3g(�(3)/3) and g(�(3)), there are always two solutions

where either one of the λi is zero or two are equal, thereby providing a maximum and minimum
for H(3)

f . If H(3)
g is equal to 3g(�(3)/3) or g(�(3)), there is only one possible solution, so the

maximum and minimum coincide.
In order to determine which solution gives the maximum of H(3)

f and which gives the
minimum, let us consider the solution where λ0 > �(3)/3 and λ1 = λ2. For H(3)

g between
g(�(3)) and 3g(�(3)/3) there are always two distinct solutions, one of which is of this form.
Therefore we may determine which solution gives the minimum and which gives the maximum
by only considering this case. This value ofλ0 is an upper boundary,because the other solutions
for λ0 are smaller. Let us consider a value of λ0 slightly below this solution, so λ1 	= λ2. We
may take λ1 to be the larger value, so λ0 > λ1 > λ2.

If g is convex, then g′(λ0) > g′(λ1) > g′(λ2), and if g is concave, then g′(λ0) < g′(λ1) <

g′(λ2). Therefore the multiplying factor in braces in equation (19) is positive if g is convex,
and negative if g is concave. It is also easy to see that if f̃ ′(g′) and g are both convex or both
concave, then the first term in the square brackets in equation (19) is greater than the second
term. If one of f̃ ′(g′) and g is convex and the other is concave, then the first term in the square
brackets is smaller than the second term.

Thus we find that dH(3)
f

/
dλ0 is positive if f̃ ′(g′) is convex, and negative if f ′(g′) is

concave. Therefore, for f̃ ′(g′) convex, as we increase λ0 up to its maximum value, H(3)
f is

increasing, and the solution where λ0 > λ1 = λ2 must be a maximum. Similarly, for f̃ ′(g′)
concave, the solution where λ0 > λ1 = λ2 is a minimum. �

Now that we have solved the case for three probabilities, we may extend the solution to
the general case with d probabilities. Thus the proof of theorem 1 is as given below.

Proof of theorem 1. We wish to find the maximum and minimum of Hf = ∑
i f (λi) with

fixed Hg = ∑
i g(λi) and

∑
i λi = 1. To solve this case, let {λi} be a set of probabilities that

maximizes Hf . We then select any three probabilities λi0 , λi1 and λi2 , and define I to be the
set of indices {i0, i1, i2}, and I⊥ to be the set of indices excluding I. If the set of probabilities
{λi} maximizes the sum

∑
i f (λi), then the set

{
λi0 , λi1 , λi2

}
must maximize the sum

HI
f =

∑
i∈I

f (λi) (22)

with the restrictions∑
i∈I

λi = �(3)
∑
i∈I

g(λi) = HI
g (23)

where �(3) = 1 − ∑
i∈I⊥ λi and HI

g = Hg − ∑
i∈I⊥ g(λi). From lemma 5, if f̃ ′(g′) is

strictly convex (concave), HI
f is maximized (minimized) only with probabilities of the form

λ0 � λ1 = λ2. That is, HI
f being maximized (minimized) implies that the probabilities

are of this form. The only way that this criterion can be satisfied for all subsets of three
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probabilities is if all the probabilities are equal, except for one which may be larger. Therefore
the probability distribution must be of the form (8).

Similarly, for f̃ ′(g′) strictly convex (concave), HI
f will be minimized (maximized) only

for probabilities of the form λ0 � λ1 = λ2, or for one of the probabilities equal to zero. The
only way that this criterion can be satisfied for all subsets of three probabilities is if a number
of the probabilities are equal, one is smaller and the rest are zero. Therefore the probability
distribution must be of the form (9). Thus we have proved each of the alternative cases for
theorem 1. �

Although we have presented the above analysis in terms of probabilities, identical results
hold for entropies of mixed states and entanglements of pure states. The eigenvalues of density
matrices or Schmidt coefficients of pure entangled states may be analysed in the same way as
probabilities, so we have the following two corollaries.

Corollary 1. Let Sg(ρ) and Sf (ρ) be two entropy measures where the functions f and g
satisfy conditions 1–3. If f̃ ′(g′) is strictly convex (concave), then the maximum (minimum)
Sf for fixed Sg is obtained for a state with eigenvalues of the form (8), and the minimum
(maximum) Sf is obtained for a state with eigenvalues of the form (9).

Corollary 2. Let Eg(|ψ〉) and Ef (|ψ〉) be two entanglement measures where the functions
f and g satisfy conditions 1–3. If f̃ ′(g′) is strictly convex (concave), then the maximum
(minimum) Ef for fixed Eg is obtained for a state with Schmidt coefficients of the form (8),
and the minimum (maximum) Ef is obtained for a state with Schmidt coefficients of the
form (9).

4. Applications

Next we consider applications of these results. As our first application, consider the problem
of maximizing or minimizing the von Neumann entropy for given linear entropy. In this
situation we take

f (λ) = −λ logλ g(λ) = λ2. (24)

Both f and g satisfy conditions 1–3. We find that

f ′(λ) = − logλ− log e g′(λ) = 2λ. (25)

To determine if f̃ ′(g′) is strictly convex or strictly concave, we may calculate df̃ ′/dg′.
When this derivative is monotonically increasing (decreasing), f̃ ′(g′) is strictly convex
(concave). We may determine df̃ ′/dg′ from f ′′/g′′, which gives

f ′′

g′′ = − log e

2λ
. (26)

Thus df̃ ′/dg′ is monotonically increasing, and f̃ ′(g′) is strictly convex. This implies, from
corollary 1, that the von Neumann entropy is maximized for a density matrix with eigenvalues
of the form (8), and minimized when the eigenvalues are of the form (9). Therefore, for the
case of the von Neumann entropy and the linear entropy, we obtain the result given in [5, 6].

As another application, we may consider the comparison of two α entropies for different
values of α:

f (λ) = λα1 g(λ) = λα2 (27)

where α1 	= α2. For this example we obtain
f ′′

g′′ = α1(α1 − 1)

α2(α2 − 1)
λα1−α2 . (28)
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Figure 2. The von Neumann entropy versus the Sg entropy with g(λ) given by equation (29) with
ω = 10 (a) and ω = 4 (b). The limit that would be given by states of the form (9) is shown by the
solid line and the limit that would be given by states of the form (8) is shown by the dashed line.
The shaded region is composed of a large number of points for randomly generated states. The
dimension is d = 10.

This expression will be either monotonically increasing or monotonically decreasing
depending on the values of α. Therefore the maximum and minimum α1 entropies are again
obtained for the same form of states. Note that, because taking α → 1 or 2 also gives the
von Neumann entropy and the linear entropy, these bounds hold for any two-way comparison
between these entropy measures.

As an example of a case where the maximum and minimum entropies are not given by
states with eigenvalues of the form (8) and (9), consider

f (λ) = −λ logλ g(λ) = λ2 + 1.99[1 − cos(ωλ)]/ω2 (29)

where we take ω = 10. The entropy Sf is simply the von Neumann entropy, whereas Sg is
slightly modified from the purity. We find that g′′(λ) = 2 + 1.99 cos(ωλ), which does not
change sign, so Sg is a valid entropy measure. However,

f ′′

g′′ = − log e

λ[2 + 1.99 cos(ωλ)]
(30)

is not one-to-one for ω = 10. Therefore the entropies Sf and Sg do not satisfy the conditions
of theorem 1, even though they are valid entropy measures.

The limits that would be given by states with eigenvalues of the forms (8) and (9) are
shown in figure 2(a). In addition, results for a large number of randomly generated states are
shown. A number of points lie outside the boundaries given by the states of the form (8) and
(9), demonstrating that these do not provide the limits to the von Neumann entropy for given
Sg entropy.

Nevertheless, even for this example, most of the points lie within the region between the
two curves, and the points that lie beyond the boundary are only a small distance from the
boundary. This example has been chosen because the points are at a noticeable distance from
the boundaries. For other values of ω the difference is not so noticeable. In fact, for some
values of ω there were no points found to lie beyond the boundary, despite the fact that f̃ ′(g′)
is not strictly convex or concave. An example for ω = 4 is shown in figure 2(b). These results
strongly indicate that the condition that f̃ ′(g′) is strictly convex or concave is not a necessary
condition, although it is sufficient.
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5. Conclusions

We have shown how to determine the maximum and minimum possible values of one type
of entropy for fixed values of another type of entropy. The forms of states that achieve these
maximum and minimum values are the same as those given by [5, 6] for the case of comparing
the von Neumann entropy to the linear entropy. These results may be applied to entropies
of probability distributions, entropies of mixed states and measures of entanglement for pure
states.

We have identified the relation between the entropy measures that is necessary for these
bounds to hold. This relation holds between the von Neumann entropy, the linear entropy
and the α entropy. The bounds we have derived therefore apply to any two-way comparison
between these entropy measures. These results allow one to estimate the value of one type of
entropy given the value of another.

For the examples we have examined, we have found that these bounds are a good
approximation of the true bounds even for comparisons between entropy measures that do not
satisfy the conditions of the proof. This indicates that, even in such cases, the bounds we have
found may be used to estimate the value of one entropy from the other (without giving the
exact bounds).
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Życzkowski K 2003 Open Syst. Inf. Dyn. 10 297
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